
www.manaraa.com

EA
RT

H
,A

TM
O

SP
H

ER
IC

,
A

N
D

PL
A

N
ET

A
RY

SC
IE

N
CE

S

Network analysis reveals strongly localized impacts
of El Niño
Jingfang Fana,1, Jun Menga,b,1, Yosef Ashkenazyb,2, Shlomo Havlina, and Hans Joachim Schellnhuberc,d,2

aDepartment of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel; bDepartment of Solar Energy & Environmental Physics, Blaustein Institutes for Desert
Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; cPotsdam Institute for Climate Impact Research, 14412 Potsdam,
Germany; and dSanta Fe Institute, Santa Fe, NM 87501

Contributed by Hans Joachim Schellnhuber, June 1, 2017 (sent for review January 23, 2017; reviewed by Dirk Helbing and Yochanan Kushnir)

Climatic conditions influence the culture and economy of soci-
eties and the performance of economies. Specifically, El Niño as an
extreme climate event is known to have notable effects on health,
agriculture, industry, and conflict. Here, we construct directed and
weighted climate networks based on near-surface air temperature
to investigate the global impacts of El Niño and La Niña. We find
that regions that are characterized by higher positive/negative
network “in”-weighted links are exhibiting stronger correlations
with the El Niño basin and are warmer/cooler during El Niño/La
Niña periods. In contrast to non-El Niño periods, these stronger in-
weighted activities are found to be concentrated in very localized
areas, whereas a large fraction of the globe is not influenced by
the events. The regions of localized activity vary from one El Niño
(La Niña) event to another; still, some El Niño (La Niña) events are
more similar to each other. We quantify this similarity using net-
work community structure. The results and methodology reported
here may be used to improve the understanding and prediction of
El Niño/La Niña events and also may be applied in the investiga-
tion of other climate variables.

climate | dynamic network | ENSO

More than a decade ago, networks became the standard
framework for studying complex systems (1–5). In recent

years, network theory has been implemented in climate sciences
to construct “climate networks.” These networks have been used
successfully to analyze, model, understand, and even predict cli-
mate phenomena (6–16). Specific examples of climate network
studies include the investigation of the interaction structure of
coupled climate subnetworks (17), the multiscale dependence
within and among climate variables (18), the temporal evolution
and teleconnections of the North Atlantic Oscillation (19, 20),
the finding of the dominant imprint of Rossby waves (21), the
optimal paths of teleconnection (22), the influence of El Niño on
remote regions (8, 23, 24), the distinction of different types of El
Niño events (25), and the prediction of these events (15, 16). A
network is composed of nodes and links; in a climate network,
the nodes are the geographical locations, and the links are the
correlations between them. The “strength” of the links is quan-
tified according to the strength of the correlations between the
different nodes (21, 26, 27).

El Niño is probably the strongest climate phenomenon that
occurs on interannual time scales (28, 29). El Niño refers to the
warming of the central and eastern equatorial Pacific Ocean by
several degrees (◦C). La Niña is the cooling of sea surface tem-
peratures (SSTs) in the eastern tropical Pacific Ocean. La Niña
usually follows an El Niño event, but not always; the overall phe-
nomenon is referred to as El Niño-Southern Oscillation (ENSO).
This cycle occurs every 3–5 y with different magnitudes. There
are several indices that quantify the El Niño activity, including
the Niño 3.4 Index, the Southern Oscillation Index (SOI) (see,
e.g., ref. 30), and the Oceanic Niño Index (ONI), which is the
National Oceanic and Atmospheric Administration’s (NOAA)
primary indicator for monitoring El Niño and La Niña. ONI is
the running 3-mo mean SST anomaly for the Niño 3.4 region
(i.e., 5◦N − 5◦S , 120◦− 170◦W ); here, we refer to this region as

the El Niño Basin (ENB). When the ONI is >0.5◦C for at least
five consecutive months, the corresponding year is considered to
be an El Niño year. The higher the ONI is, the stronger the El
Niño. Similarly, La Niña is determined to occur when the ONI
drops below the −0.5◦C anomaly for at least five consecutive
months. Presently, we have just undergone one of the strongest
El Niño events since 1948 (31, 32).

The El Niño phenomenon strongly affects human life. It can
lead to warming, enhanced rain in some regions and droughts
in other regions (33), decline in fishery, famine, plagues, even
increases in the risks of political and social unrest, and economic
changes through globally networked system (34). Global maps of
the influence of El Niño had been constructed in ref. 35. The cli-
mate network approach has been found to be useful in improving
our understanding of El Niño (8, 23–25) and in forecasting it (15,
16). However, that approach has not been developed and applied
to study systematically the global impact of El Niño, and that is
what we try to achieve in quantitative terms here. We construct
the climate network by using only directed links from the ENB
to regions outside the ENB (which we call here “in”-links). The
constructed in-weighted climate network enables us not only to
obtain a map of the global impacts of a given El Niño event, but
also to study the impacts of El Niño in specific regions, including
North America (36), Australia (37–41), South Africa (42), south-
ern South America (43), Europe (44), and the tropical North
Atlantic (45).

In the present study, we identify warming and cooling regions
that are influenced by the ENB by measuring each node’s
strength according to the weights of its links “coming” from
the ENB. We find that during El Niño/La Niña, a large frac-
tion of the globe is not influenced by the events, but the regions
that are influenced are significantly more affected by the ENB
than in normal years. Our findings support the recent sugges-
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tion that the climate structure becomes well-confined in certain
localized regions during a fully developed El Niño event. This
phenomenon is evident by inspecting the emergent teleconnec-
tions between the ENB and localized regions. Such a large-scale
cooperative mode helps us to forecast El Niño events (15, 16).
Our results also indicate that the El Niño/La Niña events influ-
ence different regions with different magnitudes during different
events; still, by determining the network community structure,
our results suggest that similarities exist among some of the El
Niño (La Niña) events. We find here that the impact of El Niño
is very variable and that it is localized and strong during El Niño
events; we quantify this variability and the intensity effect and
found, using a directed and weighted network, that it is strongly
related to El Niño.

Our evolving climate network is constructed from the global
daily near-surface (1000 hPa) air temperature fields of the
National Center for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis dataset
(46); see the SI Appendix for the analysis and results based on
the European Center for Medium-Range Weather Forecasts
Interim Reanalysis (ref. 47 and SI Appendix). The spatial (zonal
and meridional) resolution of the data are 2.5◦× 2.5◦, result-
ing in 144× 73 = 10512 grid points. The dataset spans the time
period between January 1948 and April 2016. (Because for each
window 365 + 200 days’ daily data are used, and the newest data
we can obtain is until May 6, 2016, so Φy is terminated at the
11th window of 2014.) To avoid the strong effect of seasonality,
we subtract the mean seasonal cycle and divide by the seasonal
SD for each grid point time series. The overall analysis is based
on a sequence of networks, each constructed from time series
that span 1 y.

The nodes (grid points) are divided into two subsets. One
subset includes the nodes within the ENB (57 nodes) and the
other the nodes outside the ENB (10455 nodes). For each pair
of nodes, i and j , each from a different subset, respectively,
the cross-correlation between the two time series of 365 d is
calculated,

C y
i,j (τ) =

〈Ti(d)Tj (d − τ)〉 − 〈Ti(d)〉〈Tj (d − τ)〉
σTi (d)σTj (d−τ)

, [1]

where σTi (d) is the SD of Ti(d), τ ∈ [0, τmax ] is the time lag, with
τmax = 200 d, y indicates the starting date of the time series with
0 time shift, and C y

i,j (−τ)≡C y
j ,i(τ). We then identify the value

of the highest peak of the absolute value of the cross-correlation
function and denote the corresponding time lag of this peak as
θyi,j . The sign of θyi,j indicates the direction of each link; that is,
when the time lag is positive (θyi,j > 0), the direction of the link
is from i to j . Below, we focus on the overall effect of the ENB
on regions (grid points) outside this region and thus refer to the
links directed from the ENB to a grid point j as in-links to grid
point j (24). We only consider in-links with time lag shorter than
∼5 mo (|θyi,j | ≤ 150 d) as we focus on the influence of El Niño
on the rest of the world on seasonal time scales. Examples of
in-links over different regions are shown in Fig. 1 A and B, and
the cross-correlation function of these typical links are presented
in SI Appendix, Fig. S4. Below, we elaborate on the impacts of
El Niño in some of these regions. The link weights are deter-
mined by using C y

i,j (θ), and we define the strength of the
link as

W y
i,j =

C y
i,j (θ)−mean(C y

i,j (τ))

std(C y
i,j (τ))

, [2]

where “mean” and “std” are the mean and SD of the cross-
correlation function, respectively (21, 22). We construct net-
works based on both C y

i,j (θ) and W y
i,j , and these are consistent

with each other. See Fig. 1 A and C for El Niño and Fig. 1 B and
D for La Niña (details are below).

A

C D
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B

Fig. 1. (A and C) In-weight maps (using C and W) for El Niño events.
(B and D) In-weight maps (using C and W) for La Niña events. (E and F) Mean
winter (December–February) temperature anomalies during El Niño and La
Niña. The arrows in A indicate two examples of in-links (El Niño impact), out-
going from ENB, to (i) Chicualacuala in Mozambique and (ii) Rambaxpura in
India. The arrow in B indicates another example of in-links, outgoing from
ENB (La Niña impact) to (iii) Jundah in Australia, respectively. The flat white
rectangle in A–D represents the Niño 3.4 region (5◦N−5◦S, 120◦−170◦W).

The adjacency matrix of a climate network is defined as

Ay
i,j = (1− δi,j )H (θyi,j ), [3]

where H (x ) is the Heaviside step function (H (x ≥ 0) = 1 and
H (x < 0) = 0). The in and “out” degrees of each node are
defined as I y

i =
∑

j A
y
j ,i , O

y
i =

∑
j A

y
i,j , respectively, quantify-

ing the number of links into a node or out from a node. We define
the total in-weights of each node outside the ENB as the sum of
the weights of its in-links, using C y

j ,i and W y
j ,i :

IN(C y
i ) =

∑
j∈ENB

Ay
j ,iC

y
j ,i(θ),

IN(W y
i ) =

∑
j∈ENB

Ay
j ,iW

y
j ,i . [4]

Larger (smaller) positive (negative) values of IN(C y
i ) and

IN(W y
i ) reflect stronger (weaker) warming (cooling) due to the

impact of the ENB. If there are no in-links for a node, both
the in-degree and in-weights are zero, indicating no impact of
the ENB.

Based on the ONI, we divide the 68 record years into El Niño,
La Niña, and normal years. For simplicity, we only consider mod-
erate and strong El Niño/La Niña events with |ONI|> 1◦C. For
each event, we consider the time series from July 1 preceding the
event to June 30 of the next year, to cover the whole range of one
El Niño/La Niña period (48). (The year is centered on the North-
ern Hemisphere winter, such that, for example, the year labeled
1980 runs from July 1, 1980 to June 30, 1981.) Based on this defi-
nition, we consider 11 El Niño and 9 La Niña events between the
years 1948 and 2015. We calculate the in-weighted degree fields
for El Niño and La Niña by taking the average of the same type
of events using

IN(Ci) =
∑

y∈EY (LY )

IN(C y
i )/S ,

IN(Wi) =
∑

y∈EY (LY )

IN(W y
i )/S , [5]

7544 | www.pnas.org/cgi/doi/10.1073/pnas.1701214114 Fan et al.
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where S =
∑

y∈EY (LY )

I y
i , and EY and LY refer to the years (as

defined above) in which El Niño and La Niña occur, respectively.
It is seen that regions affected by El Niño/La Niña, either by

warming or cooling, such as North America (49), South Amer-
ica (50), Europe (51), India (52), South Africa (53, 54), and
Australia (39), are characterized by relatively high in-weights
(Fig. 1 A–D) and by high temperature anomalies (Fig. 1 E and
F). The maps of temperature anomalies in Fig. 1 E and F are
obtained by first calculating a 3-mo (December–February) mean
temperature anomaly for each year, and then taking an average
of the mean value over all El Niño/La Niña years. The El Niño/La
Niña-related in-weighted extent fields are hemispherically sym-
metric, to some degree, in accordance with refs. 48 and 55.

In Table 1, we compare the in-weighted degree maps of
El Niño/La Niña events with the corresponding temperature
anomaly maps by evaluating the cross-correlation between each
pair of maps shown in Fig. 1. Note that the different grid points
are weighted by the cosine of the latitude, to account for the
lower weights (due to the smaller area) at the higher latitudes.
The cross-correlation values are found to be high, indicating the
similarity between the different measures. For more detail, see
SI Appendix, Tables S2 and S3. In addition, we also find that the
averaged effects of El Niño and La Niña on different regions
shown in Fig. 1 are quite similar. The cross-correlation value
between Fig. 1 A and B is 0.54, indicating that El Niño and
La Niña tend to affect similar regions.

Next, we study the variability of the regions that are influenced
by El Niño/La Niña. We find that during El Niño/La Niña events,
the overall global area that is influenced by the ENB becomes
smaller, whereas the impacts in these more limited areas become
stronger. This enhanced impact in localized regions is demon-
strated in Fig. 2, which compares the global distributions of the
in-degrees, IN(N ); in-weights, IN(W ); and IN(C ), of typical El
Niño and normal years. For IN(N ), the differences are quite
distinct—we see broader black regions (that indicate the absence
of in-links), as well as broader dark red regions (that indicate
that all links connected with the 57 grid points of the ENB are
in-links), during El Niño years (Fig. 2A), compared with normal
years (Fig. 2B). The underlying reason for this contrast is that,
during El Niño, the temperatures of all 57 nodes located in the
ENB are synchronized, such that for each influenced node out-
side the ENB, the 57 links with the ENB are more likely to have
the same direction (i.e., outgoing from the ENB); this situation
is less likely during normal years. We also find the localized phe-
nomenon for in-weights, during El Niño years (Fig. 2 C and E),
compared with normal years (Fig. 2 D and F). See also examples
of cross-correlation functions for nodes inside and outside the
ENB during El Niño in SI Appendix, Fig. S3.

A quantitative analysis of the area (number of nodes) that is
affected/unaffected during El Niño and La Niña years is shown in
Fig. 3, where El Niño and La Niña years are, respectively, empha-
sized by the red and blue shading. Here, the temporal evolution
of the climate network is studied by constructing a sequence of
networks based on successive windows of lengths of 365 + 200 d,
with a beginning date that is shifted by 1 mo each time. Fig. 3A
depicts the ONI as a function of time. We focus on El Niño

Table 1. Comparison (using cross-correlation) between the
in-weighted degree fields and the El Niño/La Niña mean
winter temperature anomaly shown in Fig. 1

R El Niño La Niña

RIN(C),T 0.59 −0.55
RIN(W),T 0.54 −0.51
RIN(W),IN(C) 0.92 0.95

See SI Appendix, Eqs. S1–S3 in the for the definition of R.

A

C

E

D

F

B

Fig. 2. The in-degree fields (N, W, and C) in a typical El Niño event, 1972
(A, C, and E), and a normal year, 1959 (B, D, and F).

(La Niña) events with ONIs that are larger (smaller) than 1◦C
(−1◦C). Fig. 3B depicts the number of nodes with zero in-degree
N y as a function of time, and Fig. 3C depicts the average in-
weights per node, which are given by dividing the sum of the
absolute weights of all in-links of each node outside the ENB
by N y :

C y =
∑

i /∈ENB

∑
j∈ENB

Ay
j ,i |C

y
j ,i(θ)|/N

y . [6]

Fig. 3 shows the 3-mo running average of N y and C y .
It actually is seen that, during El Niño/La Niña, the number of

nodes with no in-links, N y , drops dramatically (Fig. 3B), indicat-
ing that the total area influenced by the ENB is much smaller.
Moreover, during El Niño/La Niña, C y increases significantly
(Fig. 3C), indicating a stronger impact of the ENB in the areas
that are influenced by it. We chose the 1982–1983 El Niño event
to depict the evolution of ENSO impact, from its onset to its
decay. We plot the in-weight maps every 3 mo (SI Appendix,
Fig. S12). We find that, during the El-Nino event, the links are
more localized in comparison with the beginning and the end of
the event. To quantify the significance of the results, we used a
randomization procedure in which we shuffled the years of each
node’s time series (keeping the time ordering within each year
unchanged) and then constructed the in-weighted networks. We
found that C y ≥ 8 and N y ≤ 6300 are significant with P values
<10−3. Other related network quantities are summarized in SI
Appendix, Figs. S5–S7 and Table S1. The success of the climate-
network-based measures to detect the El Niño/La Niña events
strengthens the reliability of this approach in studying climate
phenomenon.

It is possible to classify El Niño events based on the loca-
tion of their maximum SST anomalies and on their tropical
midlatitude teleconnections (56, 57). Here, we propose classi-
fying different types of El Niño events based on the similarity
between them, which can be determined by the cross-correlations
between pairs of maps. We determine the significance of the
cross-correlation using shuffled network maps. The shuffling is
performed by dividing the map (globe) into 18 equal areas, shuf-
fling their spatial orders for each event, and then evaluating the
cross-correlation between each pair of the shuffled global net-
work maps. Eventually, we obtain a distribution of the cross-
correlation values through the shuffling process. Only correla-
tions with P values <0.01 are considered as significant.

Fan et al. PNAS | July 18, 2017 | vol. 114 | no. 29 | 7545
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A

B

C

Fig. 3. (A) The ONI as a function of time. (B) The evolution of the number
of nodes that have in-links with time. (C) The evolution of the average in-
weights per node with time.

The cross-correlations between pairs of El Niño events is
shown in Fig. 4A; insignificant cross-correlation is indicated by
the white color. Based on this heat map, the 11 El Niño events
are divided into three groups with extended white areas separat-
ing them, indicating that El Niño events within the same group
tend to have similar global impact patterns. Furthermore, we
divide the globe into three regions, approximately equal in area:
“Tropics” (20◦S to 20◦N), “North” (20◦N to 90◦N), and “South”
(20◦S to 90◦S). Then, separately for each region, we calculate the
cross-correlations between the map pairs of the in-weighted cli-
mate network. The significant cross-correlations are also deter-
mined by P values<0.01, by shuffling the spatial orders of nodes
within the same regions. The heat maps of cross-correlations for
the different regions are shown in Fig. 4 B–D. We find that the
global similarity structure receives different contributions from
different regions. More specifically, the heat map for the Tropics
region (Fig. 4B) is much more similar to the heat map for the
global area (Fig. 4A), in comparison with the other two regions,
indicating that the impact of El Niño in the tropics dominates the
classification of El Niño events. We also construct the matrix of
similarity of El Niño events based on the mean winter tempera-
ture anomaly and find that it is consistent with the network-based
similarity structure (SI Appendix, Fig. S9).

A weighted network of the 11 El Niño years is also constructed
based on the significant correlations given in Fig. 4A and is shown
in Fig. 4E; the thickness of each link represents the correlation
value between the two connected years. Then, by using a modu-
larity optimization heuristic algorithm (58), our network is subdi-
vided into three communities, which is consistent with the groups
in Fig. 4A. To view the correlation patterns associated with each
of the three communities, we chose three representative El Niño
years (2009, 1986, and 1957), each from a different community.
The in-weight maps are shown in SI Appendix, Fig. S11. The cor-
relation patterns are quite different from each other; the corre-
lation coefficients between them are summarized in Fig. 4A.

In summary, a general pattern of El Niño/La Niña’s global
impacts, as well as of their dynamical evolutions, are obtained
from a time-evolving in-weighted climate network. By averag-
ing the in-weighted degree fields of all significant El Niño/La
Niña events, we identify the regions that tend to be more influ-
enced by those events. One of the most important results of our
study is that, during El Niño/La Niña periods, a smaller world
area is affected by the ENB, but the impact of El Niño/La Niña
is enhanced in these more localized regions. This observation is
rooted in the fact that, during El Niño/La Niña, the entire ENB
warms/cools; in addition, the regions that become warmer/cooler

have similar/opposite tendencies with respect to the ENB. These
synchronized behaviors enhance the overall correlation of the
ENB with the rest of the world. However, during normal peri-
ods, part of the ENB is correlated and part is not, thus reducing
the overall correlation and extending the regions of correlation.

The method proposed above enables the detection of local
effects of each El Niño event; see SI Appendix, Fig. S10 for exam-
ples of climate networks of several El Niño and La Niña events.
Evidently, these enhanced and localized El Niño effects are asso-
ciated with serious consequences in many aspects of human life
(59–62). In Fig. 1 A and B, we indicate (by arrows) three exam-
ples of regional effects of El Niño/La Niña discussed below.
(i) Droughts and floods exacerbated by El Niño had directly
affected East Africa, leading to an increase in food insecurity
and malnutrition. El Niño had a varied significant impact on
this region, ranging from floods affecting >3.4 million people
during the 2006–2007 event to drought affecting >14 million
people during the 2009–2010 event. Excessive rains during the
2014–2016 event have led to flooding in parts of Somalia, Kenya,
Ethiopia, and Uganda, affecting nearly 410,000 people, displac-
ing >231,900 people, and killing 271 people in the region (63).
(ii) Agricultural output in India depends on the summer mon-
soons that are influenced by the timing, location, and intensity
of El Niño. Some droughts in India have been accompanied by
El Niño events (52). For example, the 2002–2003 El Niño event
was accompanied by one of the worst Indian droughts in the
past century, decreased the agricultural (cotton, oilseeds, and
sugarcane) output, and led to food inflation (64). (iii) Precip-
itation in Australia had been associated with ENSO (38, 39),
where El Niño (La Niña) tended to increase the risk of dry
(wet) conditions across many parts of the continent (65). The
2010–2012 La Niña event was particularly important because it
led to flooding across Australia and to the termination of the
particular strong “Millennium Drought” (2001–2010) in eastern
Australia (66).

The method we propose here enables the detection of the
above regions as well as other regions across the globe that are
affected by ENSO. See SI Appendix, Fig. S4 for typical cross-
correlation functions during the specific El Niño events and
regions described above.

The regions affected by El Niño vary from one El Niño event
to another, making it difficult to predict the impacts of an upcom-
ing El Niño. However, it is still possible to evaluate for each
region (grid point) the probability to be affected by ENB by using

Fig. 4. The community structure of the 11 El Niño events. (A–D) The heat
map of cross-correlations between pairs of El Niño events, based on the
global (A), tropical (B), Northern Hemisphere (C), and Southern Hemisphere
(D) maps of the in-weighted climate network. (E) Community structure
in the network of 11 El Niño events. Different colors represent different
communities.
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our climate network approach. We define the frequency Pi for
each node i in which the in-degrees I y

i are nonzero. This Pi

quantifies the probability effected by ENB. SI Appendix, Fig.
S13 shows the spatial distribution of Pi ≥ 10 (among 11 El Niño
events); these regions are marked by red color (indicating proba-
bility>> 90%) and include Australia (37–41), South Africa (42),
southern South America (43), and Europe (44). El Niño phe-
nomena can lead to warming or cooling in some regions, and
the warming or cooling can be quantified by using IN(C y

i )–
positive values for warming effects and negative values for cool-
ing effects. SI Appendix, Fig. S14 A and B shows the spa-
tial distribution of positive and negative IN(C y

i ) frequency,
respectively. We find that some regions, such as Western North
American, Western South America, South Indian, South Africa,
and South Pacific, are very frequently and positively (warm-
ing) affected by El Niño; yet some regions, such as South-
ern South America and North Asian, are very frequently and
negatively (cooling) affected (SI Appendix, Fig. S14). These
results are consistent to some degree with the temperature
anomalies during El Niño shown in Fig. 1E. To strengthen the
above results, we also analyzed the frequency (during El Niño
years) of the temperature anomalies to be above or below
one SD of normal years (SI Appendix, Fig. S14 C and D).
These results support the results obtained by using the network
approach (compare SI Appendix, Fig. S14 A–C for warming and
SI Appendix, Fig. S14 B–D for cooling) and can help to identify
the regions that have the highest probability to be affected by
El Niño.

Finally, according to our results, different El Niño events can
drive different extreme weather conditions in different regions.
For instance, the recently terminated El Niño event was dis-
tinct from most El Niño events in certain key aspects of cli-
mate disruptions (32). Collecting updated information is impor-
tant in improving related models. Meanwhile, the detection of
similarities between different El Niño events is also helpful
in understanding important common aspects. We distinguish
between different types of El Niño events based on the simi-
larities between the networks of these events. According to our
results, the similarities between different events are mostly due
to the impacts of El Niño on Tropics (20◦S to 20◦N) compared
with North (20◦N to 90◦N) and South (20◦S to 90◦S); the Trop-
ics area is ∼1/3 of the global world area. The methodology and
results presented here may help to improve the understanding of
the impacts of ENSO, and hopefully to provide the ability, in the
future, to take early actions to reduce the damage caused by El
Niño. The mechanism underlying the results reported above is
still not clear to us, and further study, maybe related to telecon-
nections, is needed to explore this mechanism.
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